- z1 = -5+6i , z2 = 1-2i, what is z1+z2 ?
Input : -5+6*sqrt(-1)+1-2*sqrt(-1)
Or
Input : complex(-5,6)+complex(1,-2)
Ans. -4+4i
- what is z1 x z2 ?
Input : (-5+6*sqrt(-1))*(1-2*sqrt(-1))
Or
Input : complex(-5,6)*complex(1,-2)
Ans. 7+16i
- 5+5i 20
—— + ——
3-4i 4+3i
Input : (5+5*sqrt(-1))/(3-4*sqrt(-1))+20/(4+3*sqrt(-1))
Or
Input : complex(5,5)/complex(3,-4)+20/complex(4,3)
Ans. 3-i
- (1+i)1000
Input : pow(1+sqrt(-1),1000)
Ans. 3.2734e150 (Mathcalc8)
Ans. 2500 (textbook)
- ((1+i)÷(1-i))16+((1-i)÷(1+i))8
Input : pow(complex(1,1)/complex(1,-1),16)+pow(complex(1,-1)/complex(1,1),8)
Ans. 2
- z = 4+3i , what is its magnitude and angle appears in complex plane ?
Input : (mag(4+3*sqrt(-1)),angle(4+3*sqrt(-1)))
Ans. 5,36.87o
Comment : a list is written in input instead of a single formula. In later post, we will further discuss this technique.
- 4½
Input 1 : sqrt(4)
Or
Input 2 : pow(4,1/2)
Or
Input 3 : root(4,1/2)
Ans. 2 (input 1)
Ans. 2 (input 2)
Ans. 2,-2 (input 3)
Comment : the function of sqrt is actually the short handed form of pow( ,1/2), so both sqrt and pow give same answer of 2. The function pow is more powerful than sqrt because its index is not limited to 1/2. However, the most powerful function is root which gives all the possible solution including -2.
- 11/3
Input : root(1,1/3)
Ans. 1,-0.5+0.866i,-0.5-0.866i
Comment : if pow is used, the answer will be 1.
- (-7+24i)1/4
Input : root(-7+24*sqrt(-1),1/4)
Ans. 2+i,-1+2i,1-2i,-2-i
Comment : if pow is used, only one solution -2-i resulted.
- Ln(i)
Input : ln(sqrt(-1))
Ans. 1.5708i (Mathcalc8)
Comment : The function Ln is the function of ln which is expanded to cover complex number. More detail will be given on the note below. The value given by Mathcalc8 is the principal value of the formula.
- (2 ÷ i) x Ln(((5+i)4 x (-239+i)) ÷ ((5-i)4 x (-239-i)))
Input : 2/sqrt(-1)*ln(pow(5+sqrt(-1),4)*(-239+sqrt(-1))/(pow(5-sqrt(-1),4)*(-239-sqrt(-1))))
Ans. 3.1415927 (Mathcalc8)
Comment : The answer is actually π.
- ii
Input : pow(sqrt(-1),sqrt(-1))
Ans. 0.20787 (Mathcalc8)
Comment : The answer is also the principal value of the formula.
- cos(i)
Input : cos(i)
Ans. 1.54308 (Mathcalc8)
Comment : More detail is given on the below note.
Definition of Ln(z) :
z = ew where w is defined as Ln(z)
z = |z|eiθ = eln(|z|)eiArg(z)
Ln(z) = w = ln(|z|) + iArg(z) + 2kπ where k = 0, ±1, ±2 ...
The value of Ln(z) at k = 0 is called the principal value (pv) of Ln(z).
pv of Ln(i) = ln(|i|) + iArg(i) = 0 + i π/2 = i π/2
ii = (eLn(i))i = e(iπ/2+2kπ) x i = e-π/2+2kπi
pv of ii = e-π/2
Definition of cos(z), sin(z) :
eiz = cos(z) + i sin(z) ( Extension from Euler's formula eiθ = cos(θ) + i sin(θ) )
e-iz = cos(z) - i sin(z)
cos(z) = (eiz+e-iz)/2
sin(z) = (eiz-e-iz)/(2i)
cos(i) = (eixi+e-ixi)/2 = (e-1+e1)/2
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.